fbpx La rivoluzione dell'elettronica tatuabile e commestibile | Scienza in rete

La rivoluzione dell'elettronica tatuabile e commestibile

--
Tempo di lettura: 1 min

Mario Caironi e il suo team dell'Istituto italiano di tecnologia (IIT) è riuscito a ottenere il transistor più sottile di sempre: 150 nanometri, centinaia di volte meno della pellicola che si usa per gli alimenti (vedi qui il suo articolo su Nature Communications). Ma a che pro spingere l'elettronica a queste dimensioni impalpabili? Il bello di circuiti stampati con materiale organico e così sottili è che si possono "tatuare" sulla pelle, per esempio per sostituire i vecchi elettrodi, ma anche sugli alimenti per controllare il loro stato di conservazione. O ancora su farmaci per accertarne il consumo regolare da parte dei pazienti, e in futuro per controllare parametri fisiologici. È la rivoluzione dell'elettronica tatuabile e commestibile, che Mario Caironi racconta in questa intervista a Luca Carra.

Intervista: Luca Carra. Sigla: Jacopo Mengarelli.

 


Scienza in rete è un giornale senza pubblicità e aperto a tutti per garantire l’indipendenza dell’informazione e il diritto universale alla cittadinanza scientifica. Contribuisci a dar voce alla ricerca sostenendo Scienza in rete. In questo modo, potrai entrare a far parte della nostra comunità e condividere il nostro percorso. Clicca sul pulsante e scegli liberamente quanto donare! Anche una piccola somma è importante. Se vuoi fare una donazione ricorrente, ci consenti di programmare meglio il nostro lavoro e resti comunque libero di interromperla quando credi.


prossimo articolo

Discovered a New Carbon-Carbon Chemical Bond

A group of researchers from Hokkaido University has provided the first experimental evidence of the existence of a new type of chemical bond: the single-electron covalent bond, theorized by Linus Pauling in 1931 but never verified until now. Using derivatives of hexaarylethane (HPE), the scientists were able to stabilize this unusual bond between two carbon atoms and study it with spectroscopic techniques and X-ray diffraction. This discovery opens new perspectives in understanding bond chemistry and could lead to the development of new materials with innovative applications.

In the cover image: study of the sigma bond with X-ray diffraction. Credits: Yusuke Ishigaki

After nearly a year of review, on September 25, a study was published in Nature that has sparked a lot of discussion, especially among chemists. A group of researchers from Hokkaido University synthesized a molecule that experimentally demonstrated the existence of a new type of chemical bond, something that does not happen very often.