fbpx In human cells | Science in the net

In human cells

Read time: 2 mins

You probably don't need to be a biologist or chemist to know that DNA is a double helix molecule. Now a team of researchers from the University of Cambridge, led by Professor Balasubramanian, reported the existence of quadruple DNA helix in human cells.

G-quadruplex

The quadruple helix is technically called G-quadruplex, where "G" refers to guanine, one of the four chemical groups, or "bases", that form DNA and which encode our genetic information. These G-quadruplex structures tend to form in nucleic acid sequences (DNA or RNA) that are rich in guanine. Four-stranded G-quadruplex structures were already been observed in test tubes and in protozoan (ciliate macronuclei), but never in mammalian cells.
Giulia Biffi (the first author of the study) and her colleagues developed a highly specific DNA G-quadruplex antibody, tagged it with a fluorescent molecule and used it to visualize G-quadruplex structures in the DNA of human cells.
With this powerful and highly specific tool in their hands, they were able to demonstrate the presence of G-quadruplex structures along different sites in the chromosomes of human cells. Moreover they investigated the relationship between G-quadruplex formation and cell cycle progression and found that these four-stranded DNA structures form more frequently when cells are replicating their DNA (the S-phase of the cell cycle).
Finally, they were able to specifically target the G-quadruplex structures by using small-molecule drugs.
Although in its early stage, the discovery of the existence of four-stranded DNA structures in human cells is also particularly exciting from a therapeutic point of view. G-quadruplex structures are more likely to occur in cells that are rapidly dividing, such as cancer cells. By targeting quadruplexes with synthetic drugs that trap and contain these DNA structures, preventing tumor cells from replicating their DNA and consequently blocking cell division, scientists believe it may be possible to stop cancer proliferation.

Original article: http://www.nature.com/nchem/journal/v5/n3/full/nchem.1548.html

Autori: 
Sezioni: 
Quadruple helix DNA

prossimo articolo

University Admissions and Talent in China: What Can Italy Learn?

Every year, millions of Chinese students take the Gaokao, an extremely tough exam that can change the course of a life. But what can this system teach us? Between intense pressure and paths to excellence, it offers a chance to reflect on the idea of merit in Italy as well.

Each year, over 12 million Chinese students sit for the Gaokao (高考), one of the most difficult and decisive university entrance exams in the world. This three-day test includes Chinese, Mathematics, English, and one elective subject from either the sciences or humanities. The maximum score varies by province, typically between 750 and 900, with the admission threshold for top universities exceeding 680–700 points. On average, fewer than 2% of students manage to get into elite institutions such as Peking University or Tsinghua University.