fbpx A new approach | Page 5 | Science in the net

A new approach

Read time: 2 mins

In April 2011, a group of researchers from the University of Washington described, in a paper published on Science, a computational method for designing proteins able to bind to the surface of a target macromolecule. They obtained a protein that binds a conserved surface patch on the stem of the influenza hemagglutinin from the 1918 H1N1 pandemic virus, thus inhibiting it. Recently, they manage to strongly improve the activity of this protein by applying an approach based on energy landscape, which is a mapping of all possible conformations of a molecular entity and their corresponding energy levels. Such a result is described in a paper appeared on the June issue of Nature Biotechnology.

The traditional approach to increase binding affinity in target molecules consists in multiple rounds of selection followed by conventional sequencing to identify the few best clones. The American researchers, however, choose a different strategy: they combined data from deep sequencing with the energy landscape mapping to optimize the search for the best binders. Then, they performed conventional directed evolution to select those binders. They combined large numbers of individually small, favorable effects that would have been very difficult to find by traditional affinity maturation approaches, thus obtaining a strong increase in binding affinity. The “upgraded” protein can bind all influenza group 1 hemagglutinins and neutralize H1N1 viruses as much effectively as many human antibodies do.

Thus, the combination of deep sequencing and computational protein design proved to be an effective tool to generate new therapeutic and diagnostic molecules with high affinity and specificity for their targets.

Autori: 
Influenza

prossimo articolo

President Trump reshapes US research landscape

trump

Con una serie di ordini esecutivi, Donald Trump smantella le politiche climatiche di Biden e ritira gli Stati Uniti dall'accordo di Parigi. Le agenzie federali scientifiche (EPA, NIH, CDC, FDA, NASA) vengono ristrutturate con nuove nomine orientate alla deregolamentazione. Vengono congelate le assunzioni federali, mentre la revisione delle collaborazioni internazionali potrebbe ridefinire il ruolo USA nella ricerca globale. Immagine: Donald Trump.

20 January 2025 marks a turning point in US science policy, with a series of executive orders drastically redefining the role of federal science and research agencies. A detailed analysis of the documents reveals an approach that fundamentally changes the basis of US climate, energy and biomedical research policy.

This comprehensive list shows the scope and breadth of the first day's interventions, which touch virtually every aspect of the federal government, from foreign policy to national security, from energy to immigration, from administrative reform to social policy.