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Combining high-mass-accuracy mass spectrometry, isobaric 
tagging and software for multiplexed, large-scale protein 
quantification, we report deep proteomic coverage of four 
human embryonic stem cell and four induced pluripotent 
stem cell lines in biological triplicate. this 24-sample 
comparison resulted in a very large set of identified 
proteins and phosphorylation sites in pluripotent cells. 
the statistical analysis afforded by our approach revealed 
subtle but reproducible differences in protein expression 
and protein phosphorylation between embryonic stem 
cells and induced pluripotent cells. merging these results 
with Rna-seq analysis data, we found functionally related 
differences across each tier of regulation. We also introduce 
the Stem Cell–Omics Repository (SCOR), a resource to 
collate and display quantitative information across multiple 
planes of measurement, including mRna, protein and post-
translational modifications.

For practical and ethical reasons, induced pluripotent stem cells 
(iPSCs) hold great potential for therapeutic and research pur-
poses. Based on morphology, capacity to self-renew and devel-
opmental potential, iPSCs are nearly indistinguishable from their 
embryonic stem cell (ESC) counterparts1–3, but their extent of 
similarity on the molecular level remains controversial4–6. 
Whereas various studies have stressed the overall similarity of 
gene expression programs between ESCs and iPSCs1,2,5,7, a few 
studies have reported subtle differences in RNA levels, DNA 
methylation and the efficiency of many iPSC lines to differentiate 
into neural lineages6,8–10. Meanwhile, similarity of human ESCs 
and iPSCs at the protein level remains completely unexplored 
to our knowledge. These analyses are critical, as many forms of 
regulation are enforced post-transcriptionally or through post-
translational modifications.

To address the proteomic and phosphoproteomic similar-
ity between ESCs and iPSCs, we used a method that combines 
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isobaric tagging, high-mass-accuracy mass spectrometry and a 
recently developed software tool. Applying this method to com-
pare two ESC lines, one iPSC line and one fibroblast cell line, 
we identified 7,952 proteins and 10,499 phosphorylation sites 
(without any replicates). Leveraging the multiplex nature of our 
approach, we then examined proteins and their phosphorylation 
sites in four ESC lines and four iPSC lines in biological triplicate 
(24 samples total) and identified 6,761 proteins and 19,122 phos-
phorylation sites in total. Rigorous statistical analysis revealed 
significant (P < 0.05, Student’s t-test) and functionally related 
differences between proteins and phosphorylation sites in human 
ESCs and iPSCs, which may reflect residual regulation charac-
teristic of iPSCs’ somatic origin. Finally, we introduce a search-
able online resource, SCOR, for storing large-scale data related 
to pluripotency.

RESULtS
Peptide identification and quantification
Resonant-excitation, collision-activated dissociation imposes 
a fundamental low-mass cutoff that hinders the detection of 
reporter ions generated by isobaric tags. To remove this limita-
tion we used beam-type CAD (HCD) with high-mass-accuracy 
detection of fragment ions11–14. These methods increase pep-
tide identifications over 60% and phosphopeptide identifica-
tions over 260% compared to CAD with low-mass-accuracy 
detection fragment ions (Fig. 1a). We attribute these increases 
to greater specificity in database searches and fewer sequence-
directed cleavage events. HCD is compatible with isobaric tagging 
strategies for multiplexed peptide quantification. Isobaric tags 
can be used to compare up to eight samples in a single experi-
ment and facilitate analysis of biological replicates and multiple 
cell lines15–17. However, this form of quantification is subject 
to a unique and widespread quantitative error arising from the  
‘co-isolation’ of multiple peptide precursors before fragmentation18.  
We therefore used recently developed software, TagQuant, which 
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 identifies mass spectra compromised by interference and excludes 
these data points from peptide and protein quantification19. This 
filtering method resulted in an increase in quantitative precision. 
As random removal of spectra also increases R2 values, we tested 
significance of the increase in R2 value resulting from interfer-
ence filtering by permutation testing. By fitting a Gaussian curve 
to the distribution, we estimated the significance of the increase 
in R2 resulting from interference filtering (P = 3.16 × 10−16;  
Fig. 1b). TagQuant also incorporates mathematical correction of 
tag impurities, summing of reporter-ion intensities and exclusion 
of low-intensity reporter ions (Online Methods)20,21. We tested our 
complete workflow using a whole-cell lysate from Saccharomyces 
cerevisiae. Separate pools of protein were labeled with isobaric 
tags, combined in known ratios and analyzed via mass spectro-
metry. The observed results matched closely to the expected ratios 
for the range of mixtures tested (R2 > 0.99; Fig. 1c).

Comparison of ESC and iPSC proteomes
We first compared transcripts, proteins and phosphorylation sites 
across two human ESC lines (H1 and H9), one iPSC line (DF19.7) 
and one fibroblast (newborn foreskin fibroblast (NFF)) cell line 
(Supplementary Fig. 1) using isobaric tags. With less than two 
weeks of analysis with an instrument, we identified 7,952 total 
proteins (1% false discovery rate (FDR); Supplementary Table 1)  
and 10,499 total sites of phosphorylation (localized with 95% 
confidence; Supplementary Table 2 and Fig. 2a,b). We validated 
measurements for selected, representative proteins by western 
blots (Supplementary Fig. 2). Identified proteins include key 
regulators of pluripotency, such as OCT4 or POU5F1, NANOG 
and SOX2 (Fig. 2c), and nearly every major component of the 
developmentally related epigenetic regulators, polycomb group 
and trithorax proteins (Supplementary Fig. 3).

Comparing ESC and NFF lines revealed that 35% of proteins 
and 59% of phosphorylation sites differed by at least twofold  
in abundance. The genes corresponding to these differentially 
regulated proteins and phosphorylation sites were functionally 
related and representative of the two cell states. For example, 

proteins found in twofold higher amounts in ESCs were enriched  
for cell cycle–related processes (for example, DNA replication, 
cell division and others) (Supplementary Table 3), reflecting the 
rapid proliferation and shorter doubling times characteristic of 
pluripotent cells22. Conversely, proteins observed at higher levels in  
NFFs were enriched for processes pertinent to differentiated cell 
types. Differential regulation of phosphorylation sites was like-
wise apparent. Phosphorylation sites that were at least twofold 
higher in either ESCs or NFFs were enriched for several different 
amino acid motifs (Supplementary Table 4). To test whether 
this reflected differences in kinase activity between the two cell 
types, we mapped potential kinases to each phosphorylated site 
using group-based prediction system software23. We then used 
Fisher’s exact test followed by Benjamini-Hochberg adjustment 
to determine whether substrates for particular kinases were 
enriched in sets of phosphorylation sites that were at least two-
fold different between ESCs and NFFs and mapped them to the 
human kinome tree (Fig. 3; adapted from ref. 24). Entire kinase 
families appear highly active in distinct cell types. For example, 
targets of CMGC kinases were more highly phosphorylated in 
the ESCs relative to NFFs, and substrates of CAMK and AGC 
kinases were more heavily occupied in the NFFs (P < 0.05,  
Fisher’s exact test with Benjamini-Hochberg correction)25. The 
large number of differences and their functional enrichment con-
firm that two sample comparisons, without replicate analysis, 
are sufficient to characterize major differences between highly 
dissimilar cell types.

A complete map of the similarities and differences between 
ESCs and iPSCs will be key for both fundamental science and clin-
ical applications. Single replicate comparison of one ESC line and 
one iPSC line, however, revealed twofold or greater differences in 
less than 1% of proteins and phosphorylation sites. This small set 
of proteins and phosphorylation sites showed no functional com-
monality (Gene Ontology terms26, Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathways27 or phosphorylation motifs). 
Moreover, comparing ESCs and iPSCs yielded roughly the same 
number of absolute protein differences as a comparison between 
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Figure � | Figures of merit for peptide 
identification and quantification. (a) Peptide 
identifications as a function of precursor and 
product mass tolerance. Using proteins isolated 
from human ESC whole-cell lysate, we performed 
liquid chromatography tandem mass spectrometry 
for each combination of dissociation method and  
mass analyzer. IT, ion-trap detection; FT, orbitrap 
detection. We searched data using fragment-ion 
tolerances of 0.01–5.0 Da, filtered results by 
precursor mass tolerances of 0.5–1,000 p.p.m. 
and filtered identifications to achieve 1% FDR. We 
performed experiments in triplicate and averaged 
the results. The number of peptide spectrum 
matches (PSMs) is proportional to circle size; 
number of unique peptides is represented by circle 
color as indicated. (b) R2 values for all peptides 
in each protein (H1 versus NFF comparison; 
fourplex experiment) were calculated as a metric 
for quality of quantification. (c) Characterization 
of quantification. Data points represent reporter 
ion intensities for a single protein mixed in the 
indicated ratios. Lines represent the theoretical 
value for the mixtures presented. 
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two ESC lines, regardless of fold difference (Supplementary Fig. 4).  
Together, these data suggested an overall inability to differentiate 
between ESCs and iPSCs at the protein level.

Next we examined RNA-seq data, which we acquired concomi-
tantly with proteome data (Supplementary Table 5). Consistent 
with our proteomic results, we detected large differences between 
ESCs and NFFs: 48% of transcripts differed by twofold or more. 
Whereas 9% of transcripts differed by greater than twofold when 
comparing ESC (H9) and iPSC transcripts for a single replicate, 
the two ESC lines showed even greater variation (12% of tran-
scripts). This suggested that it was not possible to distinguish 
differences between cell types from line-to-line variability. Unlike 
in the initial proteomic experiments, we carried out the RNA 
measurements in biological triplicate. Statistical analysis afforded 
by replicates enabled us to move beyond arbitrary fold cutoffs 
and establish statistical significance. Using Student’s t-test with 
Benjamini-Hochberg correction (P < 0.05), we observed 623 dif-
ferentially regulated transcripts between ESCs (H9) and iPSCs. 
From these data, we reasoned that proteomic differences likely 
existed between these similar cell types but were subtle and there-
fore masked by our inability to perform statistical analyses with-
out replicates.

Replicate analyses
To test this hypothesis we leveraged the multiplexing capabilities 
of eight-plex isobaric tags to compare proteins and phosphoryla-
tion sites across four ESC lines (H1, H7, H9 and H14) and four 
iPSC lines (DF4.7, DF6.9, DF19.11 and DF19.7) in biological trip-
licate (Supplementary Fig. 1). To facilitate comparison between 
all 24 samples, we median-normalized reporter-ion intensities. 
Proteomic and phosphoproteomic analyses took less than six 
weeks to acquire and resulted in the identification of 6,761 total 
proteins (<1% FDR; Supplementary Table 1) and 19,122 total 
sites of phosphorylation (localized with at least 95% confidence; 
Supplementary Table 2). We quantified 4,742, 3,396 and 2,234 
proteins in at least one, two or three replicates, respectively, and 
14,162, 8,217 and 4,564 localized phosphorylation sites in at least 

one, two or three replicates, respectively. Again we performed an 
mRNA-seq analysis for each of the samples using an Illumina 
Genome Analyzer IIx.

Analysis of a single biological replicate (8 cell lines) revealed 
only 1 transcript, 5 proteins and 4 phosphorylation sites that were 
statistically different (P < 0.05, Student’s t-test with Benjamini-
Hochberg correction; Fig. 4a). However, inclusion of two more 
biological replicates permitted detection of many differentially 
regulated elements: 1,560 transcripts, 293 proteins and 292 
phosphoisoforms differed significantly between ESCs and iPSCs  
(P < 0.05, Student’s t-test with Benjamini-Hochberg correction; 
Fig. 4a–c and Supplementary Table 6). Greater than 90% of the 
differentially regulated transcripts, proteins and phosphoryla-
tion sites differed by less than twofold. These minor deviations 
were only detectable through biological replicate analysis, which 
increased sample size, and with it, statistical power.

Though biological replicates provide the statistical power to 
detect differences, they may not always distinguish pervasive dif-
ferences between cell types from variance between cell lines. This 
is best illustrated by considering just H1 ESC lines and DF4.7 
iPSC lines. Biological triplicate analysis of transcripts from these 
lines indicates 990 differentially regulated transcripts (P < 0.05, 
Student’s t-test with Benjamini-Hochberg correction; Fig. 4d). 
However, most (63%) of these differences did not overlap with 
differentially regulated transcripts as determined by the full 
24-sample comparison. Moreover, we did not detect 72% of the 
differences identified by analysis of all eight cell lines in biologi-
cal triplicate by comparison between H1 and DF4.7 cells alone 
(Fig. 4d). We conclude that analyzing multiple cell lines is an 
essential addition to biological replicates for comparing ESCs 
and iPSCs.

Despite the subtlety of the differences observed here, their 
functional enrichment suggests a consistent distinction in 
regulation between ESCs and iPSCs. Transcripts, proteins and  
phosphorylation sites found at higher levels in iPSCs were 
enriched for many biological processes required for somatic cell 
function, including system process, organ development, blood 
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circulation and muscle-system process (Supplementary Table 7). 
However, motif analysis of differentially regulated phosphoryla-
tion sites did not implicate any specific kinases or phosphatases 
in these differences. Despite the functional relationship of the 
differentially regulated elements, the differences at each level of  

regulation (transcript, protein and phosphorylation) often did 
not correspond to the same genes (Fig. 4e).

To determine whether differences between ESCs and iPSCs 
represented incomplete reprogramming of iPSCs, we contrasted 
ESC and iPSC comparisons with ESC and NFF comparisons. 
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Based on gene-enrichment analysis, three biological processes 
showed enrichment at transcript, protein and phosphorylation 
level in iPSCs compared to ESCs: muscle system process, muscle 
contraction and wound healing. These terms reflect cellular func-
tion characteristic of mesodermal lineages and may represent  
the NFF origin of the iPSCs. Supporting this hypothesis, we 
found that all three terms were enriched in the transcripts, 
proteins and phosphorylation sites that were at least twofold 
higher in NFFs than ESCs (Supplementary Table 8). In fact, 
more than half of the Gene Ontology terms enriched among 
transcripts, proteins and phosphorylation sites that were signifi-
cantly higher in iPSCs compared to ESCs were also enriched in 
NFF compared to ESCs. Among this dataset were multiple phos-
phorylation events on NSUN2, encoded by a proto-oncogene 
implicated in cell proliferation28 (Fig. 4c). NSUN2 transcript 
and total protein levels for NSUN2 were not different between 
ESCs and iPSCs, suggesting the changes are not simply a matter 
of protein abundance. Additionally, phosphorylation of these 
sites in iPSCs was similar to the levels observed in fibroblast 
cells, which may reflect residual regulation from kinases and 
phosphatases more characteristic of the differentiated NFFs. 
NSUN2 acts downstream of c-MYC28, one of a handful of factors  
commonly used to improve reprogramming efficiency. At the 
transcript level, the set of mRNAs more abundant in iPSCs, 
which included TBX15 and PITX2, were enriched for devel-
opmental function and exposed a connection to mesoderm 

 differentiation29,30. All of these results suggest that somatic cell 
programs are not completely silenced during reprogramming. 
Although this has been observed before in gene expression  
studies31, to our knowledge this is the first evidence that incom-
plete silencing is also reflected in regulation of proteins and 
post-translational modifications10,32.

data resource and sharing
To facilitate integration of these results with other datasets we 
created the Stem Cell–Omics Repository (SCOR; http://scor.
chem.wisc.edu/) a web-based resource that collates quantitative 
biological analyses of ESCs and iPSCs. A key feature of SCOR is 
the ability to visualize quantitative information for transcripts, 
proteins and post-translational modifications from many sources 
(Supplementary Fig. 5). Included in the database are several 
large-scale analyses from other laboratories, all of which are 
queried during standard searches. To ensure that SCOR remains 
relevant, we added an option for users to submit published data 
for inclusion on the website. Our intention is that the resource 
will expand as the field grows. A separate tab in the tools section 
provides open-access, downloadable programs used for postac-
quisition data processing, including the interference filtering 
program, TagQuant. All datasets are downloadable from the 
SCOR database.

To demonstrate the value of this resource, we applied SCOR 
to evaluate results from this and several other microarray and 
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Figure 4 | Comparison of four ESC and four iPSC 
lines. (a) Differentially regulated transcripts, 
proteins and phosphorylation sites are shown 
as a function of the number of comparisons (n). 
We performed differential expression analysis 
using subsets of data. For example, the n = 2 
value reflects the number of differences detected 
from comparing just two ESC lines and two iPSC 
lines without biological replicate, whereas n = 12 
represents the differences detected from comparing 
all four ESC lines and all four iPSC lines in biological 
triplicate. The number of differentially regulated 
elements for a given fold difference is indicated 
by different colors. The lines connect data point 
for ease of interpretation. (b) Heatmaps depicting 
differentially regulated transcripts, proteins and 
phosphorylation sites (P < 0.05, Student’s  
t-test, with Benjamini-Hochberg correction). Only 
transcripts exhibiting at least a 1.5-fold difference 
and protein and phosphorylation sites exhibiting at 
least a 1.2-fold difference are shown. (c) Randomly 
selected examples of differentially regulated 
transcripts, proteins and phosphorylation sites. Bar 
heights represent relative reporter ion intensity 
(arbitrary units). *P < 0.05 (Student’s t-test), (ESCs 
compared to iPSCs). (d) Differentially regulated 
transcripts detected based on either a comparison 
between biological triplicates of H1 and DF4.7 cell 
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RNA-seq experiments1,4. This analysis, encompassing iPSCs 
derived using integrating viral vectors and non-integrating  
episomal vectors, identified several transcripts that were consist-
ently different in ESCs versus iPSCs (Supplementary Table 9).  
To include data from outside laboratories we intersected our 
results with a similar dataset4 (Supplementary Table 9). This 
dataset contained two transcripts (TCERG1L and FAM19A5) 
that were consistently higher in ESCs relative to iPSCs.  
Recent work reported that both of these genes exhibit promoter 
hypermethylation and ultimately lower expression in several 
iPSC lines10. These and other genes that show consistent dif-
ferential regulation are of great interest for further studies. As 
more proteomic studies of ESCs and iPSCs become available, 
we anticipate that SCOR will facilitate similar interlaboratory 
comparisons to determine the most pervasive transcriptomic, 
proteomic and phosphoproteomic discrepancies.

dISCUSSIOn
This comparison offers important insights into the nature of repro-
grammed cells. One subtle but critical conclusion is the remarkable 
similarity between ESCs and iPSCs, which is highlighted by the 
technical rigor required in our study to detect even minor differ-
ences. Although the exact biological relevance of these differences 
remains unknown, functional similarity of the genes that contribute 
to them suggest that iPSCs retain residual regulation characteristic 
of the cells from which they were derived. These differences do not 
appear to appreciably alter cellular function in the pluripotent state 
but instead may surface during differentiation as cells invoke gene 
expression programs needed for development. Although iPSCs can 
produce mesoderm, endoderm and ectoderm, the process of repro-
gramming selects for cells predisposed to the pluripotent state, not 
necessarily for cells that differentiate with equal efficiency to all 
lineages. For example, recent studies have reported that ESC lines 
differentiate into neural lineages with higher efficiency than most 
iPSC lines33. From our data, many transcripts with lower expres-
sion in iPSCs relative to ESCs, such as NNAT (neuronatin) and 
SOX11, were also functionally related through their role in neural 
development34,35. At the post-translational modification level, the 
extent of phosphorylation was consistently lower in iPSCs for sev-
eral microtubule-related proteins that are directly (DPYSL2; ref. 36)  
or indirectly (FAM29A37) implicated in neural differentiation and 
development. Understanding how these genes contribute to neu-
ral differentiation in both ESCs and iPSCs will be the subject of 
additional study.

A major advantage of combining multiple planes of meas-
urement is the ability to dissect regulatory mechanisms not 
apparent in a single dimension. For instance, many of the pro-
tein kinases whose substrates exhibited significant differences 
(P < 0.05, Fisher’s exact test) in phosphorylation exhibited lit-
tle to no change at the transcript or protein level. For example, 
while CDK2 mRNA and CDK2 protein amounts were largely 
unchanged (less than twofold) in pluripotent cells relative to 
NFFs, CDK2 substrates were more highly phosphorylated in 
pluripotent cells. A possible explanation for this observation 
was apparent in our global post-translational modification data. 
Phosphorylation of CDK2 at Thr160, a mark required for kinase  
activity38, was upregulated by nearly sixfold in all three pluri-
potent cell lines. Likewise, CDK4, CDK5 and CDK6 all have 
 similar amounts of transcript and protein in the pluripotent 

cells, but the motifs they target show a significant (P < 0.05, 
Fisher’s exact test) increase in phosphorylation. In contrast, 
the higher transcript and corresponding protein expression of 
cAMP-dependent protein kinase and protein kinase C in NFFs 
may explain the corresponding high levels of substrate phospho-
rylation. Taken together, these data suggest multiple mechanisms 
for the regulation of kinases. For instance, proteins involved in 
transitory functions, such as the aforementioned cell cycle–
related kinases, may be regulated via rapid and dynamic signals  
(phosphorylation and dephosphorylation) rather than by slower 
and longer-lasting transcriptional and translational changes.

The results presented here highlight the importance of includ-
ing multiple biological replicates to overcome biological and tech-
nical variability and to establish statistical significance. Moreover, 
evaluating multiple cell lines or subjects ensures that observed 
differences are persistent and not merely single sample aberra-
tions. In this study we grew and collected cells simultaneously 
under identical conditions to minimize variation introduced by 
sample handling. In interpreting these results, we recognize the 
importance of expanding the comparison of ESCs and iPSCs to 
cover as many lines, reprogramming methods and growth con-
ditions as possible. To date, 75 ESC lines are listed on the US 
National Institutes of Health–approved registry and innumer-
able iPSC lines are available from diverse sources. Comparing all 
of these cell lines is a daunting task for a single research group. 
We therefore created SCOR, an open-access resource to collate, 
visualize and analyze large-scale datasets related to pluripotency. 
As research expands, we hope that the SCOR website will bring 
datasets together and facilitate cross-laboratory comparisons at 
every tier of regulation.

mEthOdS
Methods and any associated references are available in the online 
version of the paper at http://www.nature.com/naturemethods/.

Note: Supplementary information is available on the Nature Methods website.
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OnLInE mEthOdS
Cell growth and lysis. We maintained human embryonic stem 
cells (lines H1, H7, H9 and H14) and induced pluripotent cells 
(lines DF4.7, DF6.9, DF19.7 and DF19.11) in a feeder-independ-
ent system, as previously described39. We karyotyped all ESC 
and iPSC lines before experiments using standard G-banding 
chromosome analysis (WiCell Research Institute). When cells 
reached 70% confluency, we passaged cells enzymatically using 
dispase (Invitrogen) at a 1:4 splitting ratio. We cultured human 
NFFs (CRL-2097; American Type Culture Collection (ATCC)) 
essentially according to ATCC recommendations. We maintained 
cells in 10% (v/v) FBS (Hyclone Laboratories), 1 mM l-glutamine 
(Invitrogen), 0.1 mM β-mercaptoethanol (Sigma-Aldrich) and  
0.1 mM nonessential amino acids in DMEM (both from 
Invitrogen). We passaged cells at roughly 70% confluency at a 
1:3 splitting ratio, using Tryp-LE (Invitrogen).

For proteomics experiments, we collected all cells by incubation 
for 10 min with an adequate volume of prewarmed (37 °C), 0.05% 
Tryp-LE to cover the culture surface. After cell detachment, we 
added an equivalent volume of either ice-cold growth medium for 
NFFs, or ice-cold DPBS (Invitrogen) for ESCs, before collecting 
the cells. We subsequently washed cell pellets twice in ice-cold 
DPBS and stored them at −80 °C. We collected ~108 cells for each 
analysis. We lysed samples via sonication in lysis buffer contain-
ing 8 M urea, 40 mM NaCl, 50 mM Tris (pH 8), 2 mM MgCl2, 
50 mM NaF, 50 mM b-glyceraldehyde phosphate, 1 mM sodium 
orthovanadate, 10 mM sodium pyrophosphate, 1× mini EDTA-
free protease inhibitor (Roche Diagnostics) and 1× phosSTOP 
phosphatase inhibitor (Roche Diagnostics).

For RNA-seq analysis, we washed celled twice in prewarmed 
(37 °C) DPBS and lysed them on the culture dish using Trizol 
reagent (Invitrogen). We added chloroform (Sigma) to a final 
concentration of 16.7% (v/v) and centrifuged the sample for  
15 min at 12,000g at 4 °C. We combined the resulting supernatant 
with an equal volume of 70% ethanol and processed it using the 
Qiagen RNeasy kit with on-column DNAse digestion. We lin-
early amplified poly(A)+ RNAs using a modified T7 amplification 
method40 that retains directionality of the transcripts. This proto-
col generates Illumina RNA-seq libraries with uniform coverage 
of the entire length of mRNAs. Samples were run on an Illumina 
Genome Analyzer IIx. We then aligned each lane to the genome 
and the exon splice sites database using bowtie41, allowing up to 
ten multiple matches and three mismatches. For data processing, 
we filtered 42-base-pair reads to remove adapters in each lane. We 
used Enhanced Read Analysis of Gene Expression (ERANGE)42 
to obtain expression values in reads per kilobase of exon model 
per million mapped reads (RPKM).

mRNA analysis. We performed microarray raw data processing 
and normalization as previously described1,3. We assessed ESC 
and iPSC specificity of transcripts as follows. First, we fit a linear 
model to estimate all the fold changes across the iPSC and ESC 
lines, and then applied Bayesian smoothing to the standard errors 
among the same type of cell lines. Finally, we calculated a P value 
based on the moderated t-statistics for the differentially expressed 
genes and then adjusted them based on Benjamini and Hochberg’s 
method to control the FDR25. Second, we required the fold change 
to be at least threefold different between the two cell types, 
with an adjusted P ≤ 0.05. The data in Supplementary Table 9  

were generated from 15 microarrays for ESCs, 25 microarrays  
for iPSCs, and three microarrays for differentiated cell types (NFF 
and IMR90) pooled from the work reported in refs. 1,3.

Western blot analysis. To confirm quantification determined 
by mass spectrometry, we analyzed several proteins by western 
blot analysis (Supplementary Fig. 2). After cell lysis, we loaded 
equal amounts of total protein from H1 cells, H9 cells, iPSC and 
NFFs onto a 4–15% acrylamide gel (Biorad). We used the follow-
ing primary antibodies to detect the indicated protein: mouse 
monoclonal antibody to human OCT4 (1:2,000, sc-5279, Santa 
Cruz Biotechnology), goat antibody to human DNMT3B (1:1,000,  
sc-10235, Santa Cruz Biotechnology), mouse antibody to human 
GAPDH (1:2,000, MAB374, Chemicon), and mouse antibody 
to human CD44 (1:10, 550989, Pharmingen-BD). We used the 
following horseradish peroxidase–linked secondary antibodies:  
goat antibody to mouse IgG (1:2,000, sc-2005, Santa Cruz 
Biotechnology), donkey antibody to goat IgG (1:2,000, sc-2056, 
Santa Cruz Biotechnology). We loaded a biotin-labeled ladder 
according to the manufacturer’s specification (Cell Signaling). 
We used a Super Signal West Pico Chemiluminescent Substrate 
(Thermo Scientific Pierce) according to the manufacturer’s pro-
tocol to image blots on a LAS-3000 Imaging System (Fujifilm 
Life Science). We determined quantification according to manu-
facturer’s instructions with MultiGauge software, ver 2.0 (Fujifilm 
Life Science). Between detections, we stripped the membrane using 
Restore Western Blot Stripping buffer (Thermo Scientific Pierce).

Digestion and labeling. We reduced cysteine residues in the pro-
teomics-experiment samples with 5 mM dithiothreitol, alkylated 
them using 10 mM iodoacetamide and digested proteins in a 
two-step process. We added proteinase Lys-C (Wako Chemicals) 
(enzyme:protein ratio = 1:100) and incubated the samples for ~2 h  
at 37 °C in lysis buffer. We then diluted samples with 50 mM 
Tris (pH 8) until the urea concentration was 1.5 M and digested 
them with trypsin (Promega) (enzyme:protein ratio = 1:50) at 
37 °C overnight. We quenched reactions using trifluoroacetic 
acid (TFA). We dried samples to completion after purification 
using C18 solid-phase extraction columns (SepPak, Waters). We 
performed ‘isobaric tags for relative and absolute quantitation’ 
(iTRAQ) labeling according to manufacturer supplied protocols 
(Applied Biosystems)16,17. To ensure that each of the samples con-
tained the same amount of protein we prepared a small 1:1:1:1 
(1:1:1:1:1:1:1:1 for eightplex experiment) aliquot and analyzed it 
by mass spectrometry. We used summed reporter ion ratios from 
this experiment to inform mixing ratios of the remaining labeled 
digests. Once mixed, we dried samples to completion and purified 
by them by solid-phase extraction.

Fractionation. We resuspended the labeled peptides in strong 
cation exchange buffer A (5 mM KH2PO4 and 30% acetonitrile; 
pH 2.65) and injected them onto a polysulfoethylaspartamide 
column (9.4 mm × 200 mm; PolyLC). Buffer B comprised 5 mM 
KH2PO4, 30% acetonitrile and 350 mM KCl (pH 2.65), and buffer 
C comprised 50 mM KH2PO4 and 500 mM KCl (pH 7.5). We per-
formed separations using a Surveyor liquid chromatography qua-
ternary pump (Thermo Scientific) at a flow rate of 3.0 ml min−1.  
We used the following gradient for separation: 0–2 min, 100% 
buffer A, 2–5 min, 0–15% buffer B, 5–35 min, 15–100% buffer 
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B. Buffer B was held at 100% for 10 min. Finally, the column was 
washed extensively with buffer C and water before recalibration. 
We collected the samples by hand and desalted them by solid-
phase extraction.

Phosphopeptide enrichment. After strong cation exchange frac-
tionation, we enriched phosphopeptides using magnetic beads 
(Qiagen). We washed the beads three times with water, three times 
with 40 mM EDTA (pH 8.0) for 30 min with shaking and three 
times with water again. We then incubated beads with 100 mM  
FeCl3 for 30 min with shaking. Finally, we resuspended beads  
in 1 ml 1:1:1 acetonitrile:methanol:0.01% acetic acid and washed 
them three times with 80% acetonitrile and 0.1% TFA in water. We 
resuspended samples in 80% acetonitrile and 0.1% TFA, and incu-
bated them with beads for 30 min with shaking. We washed the 
beads six times with 200 µl 80% acetonitrile and 0.1% TFA, and 
eluted the peptides using 1:1 acetonitrile:5% NH4OH in water. 
We acidified eluted phosphopeptides immediately with 4% formic 
acid, lyophilized them to ~10 µl, and diluted them with 50 mM 
phosphate buffer before analysis.

Mass spectrometry. We performed tandem mass spectrometry 
using a NanoAcquity ultra high-pressure liquid chromatography 
system (Waters) coupled to a dcQLT-orbitrap (Thermo Fisher 
Scientific). Samples were loaded onto a precolumn (75 µm inner 
diameter, packed with 5-cm C18 particles, Alltech) for 10 min at a 
flow rate of 1 µm min−1. Samples were then eluted over an analyti-
cal column (50 µm inner diameter, packed with 15 cm C18 par-
ticles, Alltech) using a 120-min linear gradient from 1% to 35% 
acetonitrile with 0.2% formic acid and a flow rate of 300 nl min−1. 
An additional 30 min were used for column washing and equili-
bration. We constructed columns as previously described12.

All mass spectrometer instrument methods consisted of one  
scan (survey (MS1) scan) (resolving power = 30,000–60,000) fol-
lowed by data dependent tandem mass spectrometry MS2 scans 
(resolving power = 7,500) of the ten most intense precursors. 
Protein identification experiments used exclusively beam-type 
CAD (HCD) with orbitrap mass analysis. Some phosphopeptide 
identification experiments included alternating HCD and elec-
tron transfer dissociation (ETD) MS2 scans. We quantified any 
peptides identified by ETD using the corresponding HCD scan. 
We used an exclusion list for 60 s using a window of −0.55 Th to 
2.55 Th. We excluded precursors with unassigned charges states 
or charge states of one (and two for ETD scans). We used auto-
matic gain control target values of 1,000,000 for MS1 analysis 
and 50,000 for orbitrap MS2 analysis. To maximize quantified 
identifications we used QuantMode for some analyses.

Database search and FDR filtering. We used DTA generator 
to extract peak information from .Raw files and print it into a  
searchable text file43. This software removed fragment ions related 
to the iTRAQ reagents and as well as charged reduced precursors. 
We searched spectra against the International Protein Index (IPI) 
human database version 3.75 with full enzyme specificity using 
The Open Mass Spectrometry Search Algorithm (OMSSA; version 
2.1.4)44,45. We used a mass tolerance of ± 4.5 Da precursors and 
a monoisotopic mass tolerance of ± 0.01 Da for fragments ions. 
We set carbamidomethylation of cysteines, iTRAQ fourplex on 
the N terminus, and iTRAQ (fourplex or eightplex) on lysines as 

fixed modifications, and oxidation of methionines and iTRAQ 
(fourplex or eightplex) on tyrosines as variable modifications. For 
phosphopeptide searches we included variable phosphorylation of 
serine, threonine, and tyrosine as variable modifications. We used 
the ‘Coon OMSSA Proteomic Analysis Software Suite (COMPASS) 
software suite to filter peptides to a 1% FDR. COMPASS groups 
peptides into proteins following the rules previously established46. 
COMPASS multiplies probability values for unique peptides of 
each protein to obtain protein probability values and then filters 
proteins by this score to achieve a 1% FDR at the protein level.

Peptide and protein quantification. We used custom software, 
TagQuant19, to perform iTRAQ quantification. TagQuant is 
written in C# programming language and distributed along with 
Compass software suite. TagQuant extracts reporter ion intensi-
ties and multiplies them by injection times to determine counts. 
TagQuant performs purity correction as previously described20. 
TagQuant normalizes intensities such that the total signal from 
each channel is equal. We summed reporter ion intensities for 
each channel for all peptides in a given protein with three excep-
tions: (i) scans corresponding to peptides found in multiple pro-
tein groups were not used for quantification, (ii) peptides found 
to be phosphorylated were not used for protein quantification 
and (iii) if peaks not related to the precursor were present in the 
MS1 scan within ± 1.8 Th of the selected precursor at an intensity 
greater than 25% of the selected precursor the resulting MS2 scan 
was not used for quantification. We median normalized protein 
and phosphorylation site quantification in order to compare 
across all three replicate experiments.

Phosphorylation analysis. We filtered phosphopeptides to a 1% 
FDR based on unique peptides as described above. To avoid over-
reporting of phosphorylation sites, we combined phosphorylated 
peptides and nonphosphorylated peptides and grouped them into 
proteins together, following previously established rules46.

We used the phosphinator software program to localize phos-
phorylation sites47. The algorithm calculates theoretical fragment 
ion m/z ratios for all possible permutations of phosphopeptide 
isoforms given the sequence and number of phosphorylations. 
The algorithm then compares the experimental spectrum against 
the theoretical product ions for each candidate phosphopeptide 
isoform, using a product mass tolerance of ± 0.02 Th. Two criteria 
are required for localization. First, the candidate with the highest 
number of matching product ions must have at least one more 
matching product ion than the second highest. Second, the algo-
rithm performs a statistical test to determine the significance of 
the observed product ions supporting phosphorylation at a specific 
residue. We take the null hypothesis to be that there is no evidence 
that a given phosphorylation is localized and that any site-deter-
mining fragments observed are merely spurious matches. We cal-
culated a probability value (p value) that represents the likelihood 
of obtaining the observed number of site-determining fragments 
or more based on random chance, using the following equation, 
the cumulative distribution function for a binomial distribution: 

P n p pk
N k

k n
N N k( ) ( ) ( )= −

=
−∑ 1

where P is the p-value, N is the number of possible site-determining  
fragment ions, n is the number of observed site-determining  
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fragment ions, and p is the probability of a single spurious  
fragment ion match. The algorithm calculates p as the product 
of the number of observed tandem mass spectrometry (MS/MS) 
peaks and the twice the product mass tolerance (±), divided by 
the MS/MS m/z range.

The algorithm performs this significance test twice for every 
phosphorylation site in the top isoform: once on each side of the 
phosphorylated residue. The site-determining fragment ions are 
those between the phosphorylation site and the closest amino acid 
residue that could be phosphorylated but are not in the top isoform. 
The algorithm considers doubly charged products for +3 m/z and 
higher precursors when the product is comprised of a sufficient 
portion of the peptide. Phosphinator converts the p-value to a 
human-readable score by taking −10 log10 (P). We only consider 
sites where this score is above 13 (that is, P < 0.05) on both the left 
and right side of the residue to be localized, and we only use pep-
tides with all phosphorylations localized for quantitative analysis.

Next, we counted phosphorylation sites. We summed quanti-
tative information from all phosphopeptides that contained the 
same sites to get the most accurate quantification for each site or 
combination of sites. We grouped peptides containing multiple 
sites with other peptides containing the exact same combination 
of sites. Therefore, we presented a list of phosphorylation iso-
forms rather than a list of phosphorylated sites. Phosphorylation 
isoforms can have information regarding one site or a combi-
nation of multiple sites. We only counted redundant sites that 
were found in more than one isoform once in the final count of 
phosphorylation sites.

Enrichment analysis. We performed two-tailed Student’s t-test  
assuming equal variance in Microsoft Excel. To correct for  

multiple-hypothesis testing, we applied Benjamini-Hochberg 
adjustment using the R statistics package. We used a local gene 
ontology MySQL database installation for analysis of function 
and cellular location and another local MySQL database popu-
lated with information from the Kyoto Encyclopedia of Genes 
and Genomes Application Programming Interface. We deter-
mined putative kinase targets using the group-based prediction 
system software. To perform Fisher’s exact test and subsequent 
Benjamini-Hochberg correction, we wrote custom software in 
the C++ programming language and interfaced to the R statistics 
package through the R Component Object Model library.
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