Covid-19/

Nuova oscillazione dei neutrini, tra materia e antimateria

Read time: 3 mins

Il Daya Bay Reactor Neutrino Experiment, una collaborazione tra scienziati di Cina, Usa, Russia, Rep. Ceca e Taiwan, ha riportato una scoperta sorprendente che potrebbe risolvere l'enigma del perché nell'universo vi sia più materia ordinaria che antimateria. Viaggiando a velocità prossime a quella della luce, i neutrini, elettronico, muonico e tau, così come le loro corrispondenti antiparticelle, si mescolano e oscillano, cioè si trasformano, ma questo comportamento è estremamente difficile da rilevare. Queste particelle, continuamente prodotte nel cuore delle stelle e da altre reazioni nucleari, sono soggette solamente alla forza nucleare debole e alla gravità, passando per lo più senza ostacoli attraverso i pianeti e le persone.

I ricercatori, dal 24 Dicembre 2011 al 17 Febbraio 2012, hanno osservato decine di migliaia di interazioni di antineutrini elettronici, catturati dai sei grandi rivelatori sepolti nelle montagne adiacenti ai potenti reattori nucleari del China Guangdong Nuclear Power Group, nel sud della Cina, che ogni secondo producono milioni di quadrilioni di antineutrini elettronici. I dati hanno permesso di calcolare, per la prima volta con grande precisione, il cosiddetto "angolo di mixing" θ13 (theta13), che esprime l'oscillazione dei neutrini elettronici e delle loro antiparticelle, trasformandosi in altri “sapori”. "Questo è un nuovo tipo di oscillazione dei neutrini ed è sorprendentemente grande", ha detto Yifang Wang del China's Institute of High Energy Physics, co-portavoce cinese dell'esperimento. "La nostra misurazione, così precisa, completerà la comprensione delle oscillazioni dei neutrini e faciliterà la comprensione dell'asimmetria materia-antimateria nell'universo." "Abbiamo avuto uno straordinario successo nel rilevare il numero di antineutrini elettronici che scompaiono mentre viaggiano dai reattori ai rivelatori a due chilometri di distanza", ha affermato Kam-Biu Luk della University of California at Berkeley, co-portavoce per gli Stati Uniti. "Non ci aspettavamo una scomparsa così considerevole, pari a circa il sei per cento. Anche se questo fenomeno è già stata osservato in un altro esperimento con reattori a grandi distanze, questo è un nuovo tipo di sparizione per l'antineutrino elettronico generato da un reattore".

L'esperimento conta il numero di antineutrini elettronici identificati dai rivelatori più vicini ai reattori di Daya Bay e vicino a Ling Ao e calcola quanti di questi avrebbero raggiunto il rivelatore più lontano senza fenomeni di oscillazione. Il numero di antiparticelle che si trasformano in altri sapori permette di calcolare il valore di θ13. I primi risultati del Daya Bay Reactor Neutrino Experiment mostrano che θ13, un tempo ritenuto prossimo a zero, è in realtà molto più grande di quanto previsto. Nei prossimi mesi, questi valori preliminari saranno raffinati attraverso la raccolta di molti più dati e riducendo gli errori statistici e sistematici. Questo permetterà ulteriori indagini e influenzerà il design dei futuri esperimenti sui neutrini. Come confermato da Aurora Meroni, una giovane ricercatrice che studia la fisica dei neutrini presso la Scuola Internazionale Superiore di Studi Avanzati (SISSA) di Trieste, Poiché langolo θ13 è diverso da zero, si potrà stabilire se c'è una differenza tra le oscillazioni di neutrini e antineutrini, cioè verificare se la simmetria CP è conservata o violata (infatti, nella matrice di Pontecorvo-Maki-Nakagawa-Sakata, che descrive il mixing dei neutrini massivi, θ13 è sempre accompagnato da una fase che in generale può essere sia reale che complessa). In questultimo caso, se la simmetria CP è violata, si potrà dimostrare perché le leggi di Natura prevedono un'asimmetria tra la materia e l'antimateria o, in altre parole, perché il nostro mondo è fatto solo della prima. Questa, infatti, è una delle tre condizioni che devono essere soddisfatte affinché si verifichi nell'universo primordiale una differenza tra la quantità di materia e di antimateria.

Aiuta Scienza in Rete a crescere. Il lavoro della redazione, soprattutto in questi momenti di emergenza, è enorme. Attualmente il giornale è interamente sostenuto dall'Editore Zadig, che non ricava alcun utile da questa attività, se non il piacere di fare giornalismo scientifico rigoroso, tempestivo e indipendente. Con il tuo contributo possiamo garantire un futuro a Scienza in Rete.

E' possibile inviare i contributi attraverso Paypal cliccando sul pulsante qui sopra. Questa forma di pagamento è garantita da Paypal.

Oppure attraverso bonifico bancario (IBAN: IT78X0311101614000000002939 intestato a Zadig srl - UBI SCPA - Agenzia di Milano, Piazzale Susa 2)

altri articoli

Epidemic: from reality to fantasy

Comparing the Covid-19 pandemic with two pandemics from literature: “The White Plague” by Frank Herbert and “Station 11” by Emily St. John Mandel

Epidemics is an often recurring theme in world literature, where authors share with us their realistic and unrealistic version of them. I recently read two books with global plagues in them: “The White Plague” by Herbert (1982) and “Station 11” by St. John Mandel (2014). These books came to mind at the outbreak of the new coronavirus epidemics, and I was reminded of the traits of their own epidemics and how puzzled they had left me. I will not compare these three diseases scientifically, as that would be impossible.